Skip to main content
EverMemOS supports a standardized group chat data format (GroupChatFormat) for batch importing conversation histories. This is ideal for migrating existing chat logs or initializing the system with historical data.

Prerequisites

Before batch storing memories, ensure you have:
  1. EverMemOS running locally - Follow the Quickstart Guide to set up your environment
  2. API service active - The Memory API should be accessible at http://localhost:8001
  3. Properly formatted data - Your chat data should follow the GroupChatFormat specification

GroupChatFormat Specification

The standard format is a JSON file with the following structure:
{
  "version": "1.0.0",
  "conversation_meta": {
    "group_id": "group_001",
    "name": "Project Discussion Group",
    "user_details": {
      "user_101": {
        "full_name": "Alice",
        "role": "Product Manager"
      },
      "user_102": {
        "full_name": "Bob",
        "role": "Engineer"
      }
    }
  },
  "conversation_list": [
    {
      "message_id": "msg_001",
      "create_time": "2025-02-01T10:00:00+00:00",
      "sender": "user_101",
      "content": "Good morning everyone, let's start the sprint planning"
    },
    {
      "message_id": "msg_002",
      "create_time": "2025-02-01T10:02:00+00:00",
      "sender": "user_102",
      "content": "Sounds good! I've prepared the technical requirements"
    }
  ]
}

Key Fields

FieldTypeDescription
conversation_meta.group_idstringUnique identifier for the group
conversation_meta.namestringDisplay name of the group
conversation_meta.user_detailsobjectDictionary of participant information
conversation_listarrayOrdered list of messages
message_idstringUnique identifier for each message
create_timestringISO 8601 timestamp
senderstringUser ID of the message sender
contentstringMessage text content

Batch Import Commands

Import Chinese Data

uv run python src/bootstrap.py src/run_memorize.py \
  --input data/group_chat_zh.json \
  --api-url http://localhost:8001/api/v1/memories \
  --scene group_chat

Import English Data

uv run python src/bootstrap.py src/run_memorize.py \
  --input data/group_chat_en.json \
  --api-url http://localhost:8001/api/v1/memories \
  --scene group_chat

Validate Format Without Importing

Before importing large datasets, you can validate the file format:
uv run python src/bootstrap.py src/run_memorize.py \
  --input data/group_chat_en.json \
  --scene group_chat \
  --validate-only

Scene Parameter

The --scene parameter is required and specifies the memory extraction strategy:
  • assistant: For one-on-one conversations with an AI assistant
  • group_chat: For multi-person group discussions
Note: In your data files, you may see scene values like work or company — these are internal scene descriptors in the data format. The --scene command-line parameter uses different values to specify which extraction pipeline to apply.

Sample Data

EverMemOS provides sample datasets in the data/ directory:
  • data/group_chat_zh.json - Chinese group chat example
  • data/group_chat_en.json - English group chat example
These files demonstrate the correct format and can be used for testing.

What Happens During Import

When you run the batch import script, EverMemOS:
  1. Validates the format - Ensures all required fields are present
  2. Sends messages sequentially - Posts each message to the Memory API
  3. Triggers boundary detection - Automatically segments conversations into meaningful topics
  4. Extracts memories - Creates MemCells when topic boundaries are detected
  5. Updates profiles - Builds and updates user profiles based on the conversation
By default, all memory types are extracted and stored: Episodes, Atomic Facts, Foresight, and User Profiles.

Next Steps

After importing your data:
  1. Verify the import - Use the Memory API to query stored memories
  2. Test retrieval - Try different Retrieval Strategies to search your data
  3. Integrate with your app - Start building features using the stored memories
For production environments, consider using the EverMemOS Cloud API for higher reliability and managed infrastructure.