GroupChatFormat) for batch importing conversation histories. This is ideal for migrating existing chat logs or initializing the system with historical data.
Prerequisites
Before batch storing memories, ensure you have:- EverMemOS running locally - Follow the Quickstart Guide to set up your environment
- API service active - The Memory API should be accessible at
http://localhost:8001 - Properly formatted data - Your chat data should follow the GroupChatFormat specification
GroupChatFormat Specification
The standard format is a JSON file with the following structure:Key Fields
| Field | Type | Description |
|---|---|---|
conversation_meta.group_id | string | Unique identifier for the group |
conversation_meta.name | string | Display name of the group |
conversation_meta.user_details | object | Dictionary of participant information |
conversation_list | array | Ordered list of messages |
message_id | string | Unique identifier for each message |
create_time | string | ISO 8601 timestamp |
sender | string | User ID of the message sender |
content | string | Message text content |
Batch Import Commands
Import Chinese Data
Import English Data
Validate Format Without Importing
Before importing large datasets, you can validate the file format:Scene Parameter
The
--scene parameter is required and specifies the memory extraction strategy:assistant: For one-on-one conversations with an AI assistantgroup_chat: For multi-person group discussions
scene values like work or company — these are internal scene descriptors in the data format. The --scene command-line parameter uses different values to specify which extraction pipeline to apply.Sample Data
EverMemOS provides sample datasets in thedata/ directory:
data/group_chat_zh.json- Chinese group chat exampledata/group_chat_en.json- English group chat example
What Happens During Import
When you run the batch import script, EverMemOS:- Validates the format - Ensures all required fields are present
- Sends messages sequentially - Posts each message to the Memory API
- Triggers boundary detection - Automatically segments conversations into meaningful topics
- Extracts memories - Creates MemCells when topic boundaries are detected
- Updates profiles - Builds and updates user profiles based on the conversation
Next Steps
After importing your data:- Verify the import - Use the Memory API to query stored memories
- Test retrieval - Try different Retrieval Strategies to search your data
- Integrate with your app - Start building features using the stored memories
For production environments, consider using the EverMemOS Cloud API for higher reliability and managed infrastructure.